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Electrolysis of CO.:
from CO, to hydrocarbons/alcohols

v Less CO, in the atmosphere
v Storage of intermittent energies (chemical storage)
v' A carbon source for production of useful carbon compounds
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Electrolysis of CO.:
from CO, to hydrocarbons/alcohols
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ETHYLENE

47.2 MJ/kg; 0.055 MJ/L

Ethylene — Polyethylene
(polyvinyl chloride, polystyrene)

Ethylene: 180 millions tons in 2024

(the largest of any organic chemical)
~ 1000 $/ton

Currently

Steam cracking of naphta or saturated hydrocarbons
(750-950°C)

> Enormous energy inputs

(8% de the total primary energy consumption in chemical industry)
» Production of 2 tons CO, / ton ethylene

CO, + (low C) electrons + protons — C,H, ?7?




Towards alcohols ?

ETHANOL 90 Mt/year
Fuel blend component
Precursor of chemical compounds (medical and food industries).

Produced from starch-based biomass (sugar cane, corn) through
fermentation.

PROPANOL 0.3 Mt/year (growth 6.6 % until 2030).
Solvent
Feedstock for the coating and polymer industry (automobile..)
Precursor in the chemical and pharmaceutical industry
Produced by catalytic hydrogenation of propionaldehyde, itself
derived from hydroformylation of fossil-derived ethylene with
hydrogen and carbon monoxide.

https://ethanolrfa.org/resources/annual-industry-outlook.
https://www.qgrandviewresearch.com/industry-analysis/propanol-market.
Industrial & Engineering Chemistry Research, 2018, 57, 2165-2177.



https://ethanolrfa.org/resources/annual-industry-outlook
https://www.grandviewresearch.com/industry-analysis/propanol-market

Electrolysis of CO.;:
from CO, to hydrocarbons/alcohols

Complexity of CO2R

» Low CO, solubility

» High cell voltages

» Carbonate formation/precipitation

» Low selectivity (multiple products + H,)

Catalyst optimization

E-cell optimization

| > 150-200 mA.cm™2
FE > 80 %
E.o <25V




Electrolysis of CO.:
from CO, to hydrocarbons/alcohols

Complexity of CO2R

» Low CO, solubility

:> » Gas diffusion electrodes/ Flow cells
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D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J.
Feaster, D. Corral, M. Fontecave, E. Duoss, S. Baker,
E. Sargent, T. F. Jaramillo, C. Hahn

Nature Energy 2022, 7, 130-143



Electrolysis of CO.:
from CO, to hydrocarbons/alcohols

Complexity of CO2R

» Low CO, solubility =) » Gas diffusion electrodes/ Flow cells

» High cell voltages => » Membrane Electrode Assembly

* Products

Cathode GDE |

Anode GDE

D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J.
Feaster, D. Corral, M. Fontecave, E. Duoss, S. Baker,
E. Sargent, T. F. Jaramillo, C. Hahn

Nature Energy 2022, 7, 130-143



Electrolysis of CO.:
from CO, to hydrocarbons/alcohols

Complexity of CO2R

» Low CO, solubility

» High cell voltages

» Carbonate formation/precipitation

CO,+ne + mH,0 — CO,R products + x OH

CO, + 20H — CO3% + H,0

Low CO, utilization efficiency

D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J.

Feaster, D.Corral, M. Fontecave, E. Duoss, S. Baker,

E. Sargent, T. F. Jaramillo, C. Hahn
Nature Energy 2022, 7, 130-143

co,
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Electrolyzer

» Gas diffusion electrodes/ Flow cells

» Membrane Electrode Assembly

» Acidic electrolysis
» Tandem CO,-to-CO-to-product
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Electrolysis of CO.;:
from CO, to hydrocarbons/alcohols

Complexity of CO2R

» Low CO, solubility

» High cell voltages

» Carbonate formation/precipitation

» Low selectivity (multiple products + H,)

D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J.

Feaster, D.Corral, M. Fontecave, E. Duoss, S. Baker,

E. Sargent, T. F. Jaramillo, C. Hahn
Nature Energy 2022, 7, 130-143

» Gas diffusion electrodes/ Flow cells
» Membrane Electrode Assembly

» Acidic electrolysis

tandem CO,-to-CO-to-product

» Tuning catalysts

(composition, morphology, molecular
surface modification...)



The selectivity issue
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Towards more selective CO, reduction:
(hydrophobic) surface modification

Porous dendritic Cu
(functionalized with alkyl thiols)

QE Si < si SE Y sisisi Y si Y
alkyl thiols

e
20 um

Tran N.H., Fontecave M and coll
Angew. Chem. 2017 56 4792

Proc. Natl. Acad. Sci. 2019, 116, 9735
ACS Catalysis 2022, 12, 10285-10293



Towards more selective CO, reduction:
(hydrophobic) surface modification

Controlled current electrolysis (30 mA.cm)
in 0.1 M CsHCO; with CO, at flow rate of 5 ml min~'

Wettable dendrite : —1.1 V vs. RHE
Hydrophobic dendrite: —=1.5 V vs. RHE

Porous dendritic Cu
(functionalized with alkyl thiols)

[+, Il EroH [l C,H, [T Hcoo [T cH,[C ] co

a)

~~ 80 -
\ ssissisis\sisisis\sis\ 9\?,
>
- e
alkyl thiols & 60+
o - - -
= Inhibit
LL]
1)
<
®)
©
<
T —
Tran N.H., Fontecave M and coll 0

b) 100

Cu dendrites With thiol

Angew. Chem. 2017 56 4792
Proc. Natl. Acad. Sci. 2019, 116, 9735
ACS Catalysis 2022, 12, 10285-10293

Nature Materials 2019, 18, 1222-1227



Artificial photosynthesis of ethylene

CO, + electrons + protons + hv — C,H, ??

Ethylene C,H, (34%); Ethane C,H; (7%)

Solar-to-hydrocarbon efficiency : 2.3 %

Low-cost high efficiency system for solar-driven conversion
of CO, to hydrocarbons. M. Fontecave and collaborators
Proc. Natl. Acad. Sci. 2019, 116, 9735-9740



Combining acidic CO2R and surface modification

> local alkaline pH : bulk acidic pH
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Combining acidic CO2R and surface modification
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Combining acidic CO2R and surface modification
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Combining acidic CO2R and surface modification
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Porous dendritic Cu

. CO reduction to ethylene

Alkaline electrolysis:

> CO + HO- =—» carbonate
> anode: Ni foam

D-Cu AEM Ni foam

H, 2, CH,COOH
CH,OH
CH, C,H:OH

GDL KOH,q KOH,,

ACS Appl. Mat. Int. 2022, 14, 31933-31941

Long-term CO reduction using Cu-dend

CO reduction using Cu-dend synthesized with H,SO, 2 M
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FE for Co.H4 was stable after 8 h.

A selective/stable catalyst
» Ethylene ~ 80 %
» C2 (C,H,+C,H-OH) ~ 93 %

ACS Catalysis 2022, 12, 10285-10293



Metal-doped Copper Nitride: CO to alcohols !

Cu NPs
40-60 nm

Au3* and/or Ag*
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» CuzN: nanorods and nanoparticles
» Cu® nanoparticles
» Homogeneous Ag doping (3 %)
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Angew. Chem., 2023, 49, 1521, patent filed.




FE/ %

Ag-doped copper nitride: CO to alcohols !
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» FE propanol: 45 %! » FE ethanol: 58 %!
» FEC,,:93 %! > FEC,,: 84 %!
» FE liquid products: 75 %! » FE liquid products: 67 %!

150 mA.cm2, KOH 5M : no H2, liquid: 90% !

Angew. Chem., 2023, 49, 1521, patent filed.



Ag/Au-doped copper nitride: CO to alcohols !

» CuzN: nanorods and nanoparticles

» Homogeneous Ag doping

» Small particles of Au

‘ CuAU1%Ago 3% R
Faradic efficiency:
76% ethanol/propanol

96 % C2+ products
86 % for C2+ liquids
100 mA cm—2,

» Ag + Au doping > surface carbophobicity 2
(DFT calculations)

Nature Materials 2025, 24, 900-906
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