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Carbon Dioxide and industrial Catalytic Processes

Carbon Capture and Storage or Utilization (CCS / CCU): the Methanol Economy

Methanol Economy

CO, + 3 H, CH3;0H + H,0
AH° peom 298k = -49.5 kjimol

Currently based on Reforming
Green H,
production Technologym (SynGas)
+ H,0 CO +3H,
Energy:
Solar - Wind -

p Hydr:?é;eolll':l:rmal CO+2 H2 CHSOH

CLOSED = Atomic

CARBON ‘ CO, +H, l

!

Methanol Production: ca. 120 Mtlyear

O
ay Global Warming Index
Nsep o | Mfm“m] -1.2 to -1.3 kg of CO,lkg of CH;OH
versus
- +0.7 to 1.1 kg of CO,lkg of CH;OH

(when CH;OH is produced from syngas)

Goeppert et al. Chem. Soc. Rev., 2014, 43, 7995.
Alvarez et al. Chem. Rev., 2017, 117, 9804.



Carbon Dioxide (CO,) Hydrogenation and Methanol Synthesis

Understanding the role of the Metal-Support Interface
THERMODYNAMIC BOUNDARY CONDITIONS

Reaction Enthalpy (AH)

Methanol synthesis: CO, + 3H, = CH;0H + H,0 —49.5 kj.mol!
Methanation Reaction: CO, + 4H, = CH,+ 2H,0 —165 k|.mol!
(Sabatier Reaction)

Reverse Water Gas Shift: CO, + H, = CO+ H,0 +4| k|.mol!

CATALYSIS: COPPER PARTICLES FOR METHANOL SYNTHESIS
FROM SYNGAS (CO/H,) vs. (CO,/H,)

Catalysts Cu/ZnO/Al,0;— 240-260 ° C— 50-100 bars — Syngas (ICl 1960)
Industrial CO hydrogenation to methanol catalyst

= Rate acceleration by CO, (1-2%)

" Low methane selectivity

* Lower stability in CO, rich stream (hydrogenation of CO,)

Behrens et al., Science 2012, 336, 893.
Fischer et al., J. Catal. 1997, 172, 222.




CO, Hydrogenation and Methanol Synthesis

Understanding the role of the Metal-Support Interface

COPPER PARTICLES FOR METHANOL SYNTHESIS
Support Effects in CO, Hydrogenation with Supported Cu nanopatrticles

Catalytic tests in Flow Reactor
230 °C, 25 bar, CO,/H,IN, = 2/6/2
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Methanol formation rate

Support: Silica Zirconia Titania Alumina

Early works of Baiker, Bell..
Alvarez, Bansode, Urakawa, Bavykina, Wezendonk, Makkee, Gascon,
Kapteijn, Chem. Rev. 2017, 117, 9804-9838.

Methanol (CH;0H)
Monoxide de Carbon (CO)
Dimethyl ether (CH;0CH,)
No methane detected



CO, Hydrogenation and Methanol Synthesis
The Case Study of Supported Nanopatrticles

Surface of Catalysts are Complex!

Alloyed/intermetallic Metal-support
phases interface

Overlayer :

- M
’ MO, s 0/ \[‘o]n
y—4 l L
- i Oxide
M;;:{' ta);(nlge Oxide SUP P ort vacancies Interfacial sites
Support Effects LT =v,

Questions to be addressed:

What are the roles of supports, promoters, interfaces, vacancies...?

Can we identify new catalysts for a more efficient conversion of CO; to value added products?

Our Approach and Methodology:

Part 1) Controlled Synthesis of Supported Nanoparticles with Tailored Interfaces & Composition

Part ll) Efficient Exploration of the Chemical Space via Data-Driven High-Throughput Experimentation



Controlled Synthesis of Supported Nanoparticles with Tailored Interfaces & Composition

Understanding Catalysis, One Atom at a Time

Supported Zeolites
metal oxides
O O
\N\ 7/
e ~N
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Support preparation Tailored Molececular Step 3. M
Precursors Post-treatment e} P Oi‘
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O/H\O/H OH A — vacuum OH LnM\O Isolated sites Y = OH, O or vacant site
L ~H,0 © | LaMXy ° | _ for e
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Control Catalyst Synthesis at the Molecular Level Motal Namoparile
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M = late TM
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Support |

Pioneering work from Ballard, Basset, Burwell, Gates, Ermakov, Iwasawa and Marks.



Controlled Synthesis of Supported Nanoparticles with Tailored Interfaces & Composition

Understanding Catalysis, One Atom at a Time

Synthesis of Supported Nanoparticles with Tailored Interfaces and/or Composition

Stepwise Introduction of Individual Elements
via Grafting and Thermal Treatment

Post-treatment

(H)
OH M, MoXna My,
| O O Grafting (M2)X, | O O
Support > Support
SOMC/TMP

Post-treatment

(H2)

e

Detailed Characterization under Operating Conditions & Molecular Modeling

In situ XAS (Ga K edge): Operando IR spectroscopy
30

20

—H,

—COyH,

o

5
Time / min

Normalized absorption / a.u
)
o

C. Copéret Acc. Chem. Res. 2019, 52, 1697-1708. DOI: 10.1021/acs.accounts.9b00138.



CO, Hydrogenation and Methanol Synthesis
Understanding the role of the Metal-Support Interface

REDUCIBLE DOPANTS: ZINC & GALLIUM

Intrinsic Formation Rates

< &1 Il ove
.C
Post-treatment -3 [ CH;OH 86 %
(H2) | o « |l co
2
M2 X1 ,M1‘ © S
o o, s
| / \ =
| Support g
5 <)
(s
Post-treatment % .
(H2) £ © . . . .
| | E Cu/SiO, Cu-Zr/SiO, Cu-Ga/SiO, Cu-Zn/SiO,

* Improved CH3;OH Activity and Selectivity compared to Cul/SiO, and Cu-Zr/SiO,
= High Selectivity for Zn (>70%) and Ga (>90%) at Higher Conversion

| , .
M, =Ti, Zr,Hf,Ta & M = Cu M, =Ga,Zn &M =Cu

S. R. Docherty, C. Copéret J. Am. Chem. Soc. 2021, 143, 6767-6780.



CO, Hydrogenation and Methanol Synthesis

Understanding the role of the Metal-Support Interface

What — we think — we know

. Importance of Metal (Cu and others) | Metal oxide (Zr, Zn, Ga...) Interfaces
. Involvment of Redox processes to generate Metal-Metal oxide Interfaces
. Methanation catalysts (Ni, Ru, Os, Rh, Ir) make stable alloys with Gallium

due to site isolations and metal — metal oxide interface drive methanol selectivity

@ ‘ COz/Hz ‘

Ga redox

\ H, 4 Sio,

What we do not know

. Role of Redox processes (facilitates CO, activation and CH;OH desorption ?)
. Kinetic of the Redox Process (and its relation to methanol formation rate)
. Predictive Reactivity Descriptor

S. R. Docherty, C. Copéret J. Am. Chem. Soc. 2021, 143, 6767-6780.



CO, Hydrogenation and Methanol Synthesis

Understanding the role of the Metal-Support Interface

KNOWN PATTERNS across the PERIODIC TABLE of the ELEMENTS
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CO, Hydrogenation and Methanol Synthesis

Understanding the role of the Metal-Support Interface
CHANGING PATTERNS of the PERIODIC TABLE of the ELEMENTS
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Efficient Exploration of the Chemical Space

Dopants:

:Ti
1 Zr
: Hf
:Nb
: Ta
:Cr
: Mo
:Mn
:Zn
0: Ga

CO + CH,OH selectivity /%

Data-Driven High-Throughput Experimentation

CO + CH,OH sel’ctivity 1%

2310594 1 9 qg

V ﬁ gﬂgﬂ%s

28

v
EEEEEEE
_ s

* %
-
-

s S
—‘4—:g

o w .- w N

~

PLCr@SiO,
10
S > 440
. ) ’Pdda@OiQ 5 “PtGa@C
10 10016nm<}9 =~ o~
P
1
Fe 21nm
1@
|
o, D7 ® Group 8 (Fe, Ry, Os)
Co-based catalysts
L 2 M Group 9 (Rh,Ir)
3.0nm ¥ Ni-based catalysts
P Pd-based catalysts
< Ptbased catalysts
| # Cu-based catalysts
v ™ Au-based catalysts
Pps
TiO,
. 2
Ir ’
Rh
0s)° m Ve
T T T
0 20 40
Intrinsic formation rate /mol h™ moly,™
2 3 4 6 7 8 9 10 N

e

=
o
w

12 13 14 15 16 17 18

HBRABRRM
HEEFEH
& (&R
llllllll
SIEENEEEA
) ) ) o e

g R N ENAIENE A A
S B A R R FA B

W. Zhou, V. Bochter, N.

@Zﬁ%ﬁﬁéﬁ 4|k
E2E3FA |2 [ERERIERIE
‘M EIRIRE] %] 7 ¢

[

Y = g
9Y'Oe1[o|1o Qm 1[0| 10
>
Ru
10
T T T T T T T T 1
4 8 12 16 20

Intrinsic formation rate /mol h™' mol,"

*Reaction condition:
230 °C, 25-40 bar, H,/CO,/Ar = 3:1:1

Learning from the Periodic Table:
Many More Combinations to Explore
But what is the best approach?

With 5 elements and many
compositions: >> | 0?3 combinations

Promoters

Iwanojko, Y. Steifel unpublished results



Efficient Exploration of the Chemical Space

Data-Driven High-Throughput Experimentation
SwissCat+ —An ETH Domain Initiative towards Data-Driven High-Throughput Experimentation

Since 2023

ParBayesianOptimization in Action (Round 1)

By AnotherSamWilson - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=
84842869

Data Processing & Expertise
e.g. Bayesian Optimization

P. Laveille, P. Miéville, .

Al/ML

*To analyze large
datasets, interpret
results & support
decision making
process.

High-throughput

*To generate large
number of datasets in
a reduce amount of
time.

.

Automated Synthesis & Characterization — Parallel fixed bed and Batch reactors

Design of
Experiments

*To reduce the number

of experiment needed
to screen large

parameter spaces.

Automation

*To increase
experimental accuracy
& reproducibility, to
operate 24/7 and
digitize workflows.

. C. Copéret, N. Cramer, Chimia 2023,

77, 154-158 - https://swisscatplus.ch



Efficient Exploration of the Chemical Space

Data-Driven High-Throughput Experimentation

ML-Guided Evolution of CO, to Methanol Catalysts

=  Automated data upload to ELN.
=  Automated data analysis & merging via
barcode & python script.

=

Data Processing EPFL

Fixed Bed Study

2 days

= 24 reactors simultaneously.
= 50mg catalyst per reactor.
=  CO,/H, =1/3 (8ml/min/reactor).
= 32 bars, 275°C.

3U.1U0.ZUZ3

A. Ramirez, E.
Loic M. Roch, C. Copéret, P. Laveille Chem Catal. 2024, 4, 100888.

1 support among 4 (Al,03, SiO,, TiO,, Zr0,).

Up to 3 metals among 6 (Ce, Co, Cu, Fe, In, Zn).
Total metal loading up to 5wt%.

With or without K promoter (up to 1 wt%).

> 20 M possibilities.

Maximize CO, conversion & MeOH selectivity.
Minimize CH, selectivity and metal cost.

z
>
%
;<
" ®E ®E B = = »

ML-BO of large chemical

space

ETHziirich

Catalyst Library Synthesis
1 day

CH;OH, .
CO, CH, -

24 catalysts per batch.
500mg per catalyst.

24 catalysts per generation.
5 days per generation.
6 iterations (144 catalysts).

e
il

Thermal Treatment

1 day

= 24 catalyst simultaneously.
= 4hat550C.

Solid Dispense

<1 day

Lam, D. Pacheco Gutierrez, Y. Hou, H. Tribukait,



Efficient Exploration of the Chemical Space

Data-Driven High-Throughput Experimentation

MACHINE LEARNING-GUIDED EVOLUTION of CO, to Methanol CATALYSTS

Automated combination Automated dispensing of Impregnated supports. Barcode reading. Fixed bed reactors.
of metal salts solutions. supports.

ETHziirich
A. Ramirez, E. Lam, D. Pacheco Gutierrez, Y. Hou, H. Tribukait, o
Loic M. Roch, C. Copéret, P. Laveille Chem Catal. 2024, 4, 100888. zprL \CAT



CO, Hydrogenation and Methanol Synthesis

Development of Heterogeneous Catalysts via Data-Driven Approach
MACHINE LEARNING-GUIDED EVOLUTION of CO, to Methanol CATALYSTS

Elements . Potassium

Individual Compositions

. Cerium . Cobalt . Copper . Iron Indium . Zinc

Exploring chemical space

N w
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A. Ramirez, E. Lam, D. Pacheco Gutierrez, Y. Hou, H. Tribukait,
Loic M. Roch, C. Copéret, P. Laveille Chem Catal. 2024, 4, 100888.
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CO, Hydrogenation and Methanol Synthesis

Development of Heterogeneous Catalysts via Data-Driven Approach

MACHINE LEARNING-GUIDED EVOLUTION of CO, to Methanol CATALYSTS

Elements . Potassium Cerium . Cobalt Copper . Iron Indium Zinc

Individual Compositions

Exploring chemical space Finding most active elements
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CO, Hydrogenation and Methanol Synthesis

Development of Heterogeneous Catalysts via Data-Driven Approach
MACHINE LEARNING-GUIDED EVOLUTION of CO, to Methanol CATALYSTS

Elements . Potassium Cerium . Cobalt Copper . Iron Indium Zinc

Individual Compositions

Exploring chemical space Finding most active elements

Exploring elemental doping
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CO, Hydrogenation and Methanol Synthesis

Development of Heterogeneous Catalysts via Data-Driven Approach
MACHINE LEARNING-GUIDED EVOLUTION of CO, to Methanol CATALYSTS

Elements . Potassium Cerium . Cobalt Copper . Iron Indium Zinc

Individual Compositions

Exploring chemical space Finding most active elements Exploring elemental doping Minimizing metal content by doping
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CO, Hydrogenation and Methanol Synthesis

Development of Heterogeneous Catalysts via Data-Driven Approach
MACHINE LEARNING-GUIDED EVOLUTION of CO, to Methanol CATALYSTS

Elements . Potassium

Cerium . Cobalt Copper . Iron Indium Zinc

Individual Compositions

o Decreasing further the cost by doping
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120 catalysts synthesized and tested in 5 weeks

A. Ramirez, E. Lam, D. Pacheco Gutierrez, Y. Hou, H. Tribukait,
Loic M. Roch, C. Copéret, P. Laveille Chem Catal. 2024, 4, 100888.
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CO, Hydrogenation and Methanol Synthesis

Development of Heterogeneous Catalysts via Data-Driven Approach
MACHINE LEARNING-GUIDED EVOLUTION of CO, to Methanol CATALYSTS

nnnnnnnnnn m: K W 2_NoCost.

Conversion vs Selectiviy
Individual Compositions
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A. Ramirez, E. Lam, D. Pacheco Gutierrez, Y. Hou, H. Tribukait, ETHairich
Loic M. Roch, C. Copéret, P. Laveille Chem Catal. 2024, 4, 100888. CATS
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MORETO DISCOVER and EXPLORE...
/
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CO, Hydrogenation and Methanol Synthesis

Understanding the role of the Metal-Support Interface
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Selectivity / %

=  Particle size tuned from 1.6 nm to 3.0 nm via
SOMC-approach

=  Characterized by microscopy and spectroscopy

=  Particle size effect in CO, hydrogenation:

CH, vs. CO

CO, Hydrogenation — 230 C, 25 bar(g)
(3 H,, 1CO,, | Argon — flowrates: 6-100 ml min-')

80 -
70 -

B cH,
—
[_IcHOH

Selectivity @ 5% conv.

Co/Si02 1.6nm Co/SiO2 2.2nm Co/SiO2 3.0nm

X.

Zhou,

G. Price,

G. Sunley, C. Copéret, Angew. Chem. Int. Ed. 2023, e202314274.
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Discovery of Tellurium: an Outstanding and Unexpected Promoter for RWGS with Co



Synthetic

Protocol

CO, Hydrogenation

Incipient Wetness
Impregnation

= Co-impregnation of metals
= 0.3 mmol/gM & Te
= M= Co, Ni, Rh

Calcination

= Synthetic air
= 500 °C (5 °C min™")

CO, Hydrogenation and Methanol Synthesis

Development of Heterogeneous Catalysts via Data-Driven Approach

In Situ Activation

= Hydrogen
= 400 °C (5 °C min'™)

Cco,
Hydrogenation

80 mg catalyst
H,:CO,:Ar = 3:1:1
200-450 °C

1-40 bar (g)

% Typical methanation catalysts chosen
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— —EQLine

= Te-Promotion induces RWGS in classical methanation metals

0 350 400 450
Temperature / °C

CO Selectivity / %

401

20 -

-n
- &
- A

(E

-Co
-Ni
‘Ru

Rh

_ = — - a
== 3 3

200 250 300 350 400 450
Temperature / °C

Conditions: 80 mg cat., 200-450 °C, 40 bar (g), H:CO,:Ar = 3:1:1, 20 ml min’

<+ Comparison: All reactivity shifted to pure RWGS

Selectivity / %
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X. Zhou, C. Hansen, D. Isler, W. Zhou, J. Paterson, J. Southouse, C. Copéret,

J. Am. Chem. Soc. 2025, 147, 22309-22313.




Vision (2025)

Development of Heterogeneous Catalysts and Functional Materials via a Molecular Approach

WP1 Data-Driven Exploration and Development
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WP2 SOMC & ALD CatalystsM, = Zn, Ga...
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S. R. Docherty, C. Copéret J. Am. Chem. Soc. 2021, 143, 6767-6780.
C. Sidhoum C. Hansen, C. Copéret Actualité Chimique 2025, 506, 5-12.

A. Comas-Vives, C. Copéret Acc. Chem. Res. 2025, in press. Doi:
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10.1021/acs.accounts.5c00599
10.1021/acs.accounts.5c00581




Our Vision

Development of Heterogeneous Catalysts and Functional Materials via a Molecular Approach

Transfer Learning and Data Science
across Heterogeneous Catalysis

(o]
Z_
NS

physics-informed descriptors
MLP derived E,q,, E

model & result interpretation |e 0:
SHAP, parity plots, MAE A

alloy

initiation
fixed-bed FAME HDO with best HDO cat. regressor model
SwissCAT+ 16x flow reactor . with or w/o pre-training
o
chm/\)Lo/

\
l 1,,/

automated catalyst synthesis
air-free SOMC or wetness impregnation

S. R. Docherty, C. Copéret J. Am. Chem. Soc. 2021, 143, 6767-6780.
C. Sidhoum C. Hansen, C. Copéret Act. Chim. 2025, 506, 5-12. V. Béchter, N. Iwanojko unpublished.
A. Comas-Vives, C. Copéret Acc. Chem. Res. 2025, in press. Doi: 10.1021/acs.accounts.5c00599
C. Hansen, W. Zhou, C. Copéret Acc. Chem. Res. 2025 in press. Doi: 10.1021/acs.accounts.5c00581
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CO, comme Matiére Premiére
A la Recherche de Catalyseurs
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