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Qu’est-ce qu’un plasma ?

Plasma = gaz ionisé dominé par interactions coulombiennes
Naturellement ny ~ 103cm=3 (radioactivité, etc...)

Avalanche électronique : n(x) =n, exp(ca; X)




Qu’est-ce qu’un plasma naturel 7

Plasma froid (out of equilibrium) Plasma chaud (at equilibrum)
* 1n,/n, ~10°- 104  Fully ionized
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Qu’est-ce qu’un plasma industriel ?

Plasma froid (out of equilibrium)

* 1n,/n, ~10°- 104
Te >> Tgas
Eaa /7 <I> '\

% Intéréts technologies plasma:

Plasma chaud (at equilibrum)

e Fully ionized

o . . * Te = Tions
* Alimenté par électricité (verte)
. ON/OFF immédiat Efq \ <I> /
* Maintenance faible, pas de matériaux rares
* Faible sensibilité aux impuretés
*  Mise a I’échelle industrielle et /ou délocalisée possible
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Plasma froid vs plasma chaud pour la conversion de gaz
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Intérét des plasmas froids pour la conversion de CO,
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Qu’est-ce qu’un plasma de CO, ?

Plasma froid (out of equilibrium)
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Qu’est-ce qu’un plasma de CO, ?

Plasma froid (out of equilibrium)

. no/ng ~103-10% - 103 x n_, = ionisation

= 10! x n, 2 vibrational excitation

'Y Te >> Tgas 9 Te >> T ib > TI'Ot -~ Tgas
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Exemples de réactivité des especes excitées par un plasma

Plasma froid (out of equilibrium)
. no/ng ~103-10% = 103 x n, - ionisation
* To >> Tgas

Efiea /<> N\

= 10! x n, 2 vibrational excitation
> To >> Tvib > Trot - Tgas

« back reaction »:
CO+ 0+ M= CO,+M

CO(a%ll) + 0, > CO, + O

v" dissociation: v
e- H CO, " (i) | CO + O('D)
CO," iy + O > CO + 0, 7

v DRM, methanation:

CH, + O('D) > CO +H, +H
k =100 * k CH34+0(3P) > CO+H2+H

Autre « back reaction »:

CO + OH > CO, +H

Clé pour un méthanation efficace... ?

Role de H,*(vib)...?
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Améliorer les efficacités de conversion

- Don des plasmas:

o
- Malédiction des plasmas: } Tout peut réagir!

‘: ~ Comment controdler la sélectivité ?

Plasma-catalyse Plasma-membrane Plasma-liquide

Promouvoir un produit unique Fuiter les réactions inverses Protéger les produits formés

BaysSro5Fey 20005035
perovskite membrane

Méthanation, méthanolisation, DRM Conversion directe de CO, avec H,O 7

o) +}z<+ M > CO, + M
(syntheése de C,H,, NH,, NOx, etc..) CO(aM) + B > CO,+ O



Performances de conversion du CO, par plasma

Plasma-catalyse

Promouvoir un produit unique

Méthanation, méthanolisation, DRM

(synthese de C,H,, NH,, NOx, etc...)

en. eff. CO2 conv. (%)

= %= PIONEER Database on CO, plasma-catalysis

Performances dans la littérature:
- https://db.co2pioneer.cu

-
@

- 90% des études faites avec des
Décharges a Barriere Diélectriques (DBD)

101¢ ' , e
Best results:
100.
Lot - Méthanation
80% conversion a 70% eff. énergétique
1072} )
- Catalyseur: Ni sur CeO,, / ZrO,
o MW
. NRP
107 RF
corona
glow discharge
10-4 o= other
B O U

CO:2 conversion (%)

raction: do nothing; axis: x; spacies: CO2; aggr: mean DOI:https://doi.org/10.1016/ jechem. 2023,07,022


https://db.co2pioneer.eu/

Complexité du couplage plasma-catalyseur

Plasma-catalyse Décharge a Barriere
Diélectrique (DBD)

Promouvoir un produit unique

Electrode HT Barriere isolante

Contre électrode Plasma 3y
filamentaire

catalyseur
plasma

4-0.5ns
AE (max = 700 kV/em)

Barriere isolante



Nécessité d’inventer une nouvelle catalyse activée par plasma

Plasma-catalyse » Comment optimiser le couplage plasma-catalyseur?

» Comment minimiser le « bypass » du gaz ?

Promouvoir un produit unique

1 . Couplage plasma- 2 . Concevoir des supports de
catalyse avec d’autres catalyseur macroscopique
plasmas que les DBDs dédiés au plasma

- Plasma RF, MW pulsés = Monolithes, mousse céramique 7
- Aeromaterials, MOF 7

Plasma -

i Gas molecules: :
Ny, Hy, 0,,C0,, CH,, H,0. |

catalyseur

plasma : Pollutants:

Plasma-catalyst interactions

E-R \ Electrical field

""" » Products enhancement

Micro-discharge

vacancy

Barriere isolante
IMs = Intermediates © Electrons O Radicals L-H = Langmuir-Hinshelwood
* = Adsorbed state I(O\\ Excited species ‘ lons (+/-) E-R = Eley-Rideal




Nécessité d’inventer une nouvelle catalyse activée par plasma

Plasma-catalyse » Comment optimiser le couplage plasma-catalyseur?

» Comment minimiser le « bypass » du gaz ?

Promouvoir un produit unique

» Redéfinir un « catalyseur » sous exposition plasma !

| ‘ 1 . Couplage plasma- 2 . Concevoir des supports de 3 . Matériaux catalytiques

catalyse avec d’autres catalyseur macroscopique pour especes excitées

plasmas que les DBDs dédiés au plasma (M*(vib), radicauz, états électroniques...)

- Plasma RF, MW pulsés = Monolithes, mousse céramique 7
- Aeromaterials, MOF 7

Plasm "
ASMA  Rialasilas DA @ikt ;’Gas molecules:

; i Ny, Hy, 03, €Oy, CHy, H0. T
i i surface

catalyseur

plasma : Pollutants:

Plasma-catalyst interactions Ep!
asma

Interface

* E-R \ Electrical field °>5

""" » Products enhancement o 1

c =
w

CO, + 4H,
Micro-discharge
b 4 vacancy CH4 + QHQO
Barriere isolante
IMs = Intermediates © Electrons Radicals L-H = Langmuir-Hinshelwood . .
° g Reaction Coordinate

E-R = Eley-Rideal

* = Adsorbed state I(O\\ Excited species ‘ lons (+/-)



Développer des réacteurs plasma-catalyse plus performants LEP

Plasma-catalyse » Comment optimiser le couplage plasma-catalyseur?

» Comment minimiser le « bypass » du gaz ?

» Redéfinir un « catalyseur » sous exposition plasma !

1. Recherche fondamentale sur 2. Développement de sources plasma-catalyse efficaces
I'interaction plasma-surface

Source RF pulsée - catalyseur

Cycles

Turning CO, into biomethane

Diagnostics in situ/in operando

Edmond Baratte
[

,«' [ DIM 4 Rl 1 X
MaTerRE -
Domaine de Recherche et d'Innovation Majeur Q“ SATT QI D-

* Région s
iledeFrance NOVATION




Porjet CYCLES : Recyclage du CO, en CH,

Biogas plant exhaust =
55% bioCH, (sold to the gas companies) + 45% bioCO, (no carbon footprint)

GDF £ 1eréea

—_ 0)

Cycles valorizes the
extra CO, to increase
the productivity of the
biogas plants
~3MTC02




Quelques points a retenir...

Statut des technologies plasma de conversion de
gaz:

Dissociation CH, : industrialisation

ggi z g&l } Transfert techno.

Methanolisation : recherche académique

Principaux axes de recherches

e Définir précisément le « cahier des charges » d'un
catalyseur utile au plasma
- Forme macro, mobilité oxygene, réactivité
basse température

* Explorer les sources plasma au-dela de la simple
DBD a pression atmosphérique

* Nouvelles stratégies de couplage plasma-catalyseur

Avantages:

Electrification de I’économie
ON/OFF immédiat
Possibilité de déploiement local

Approches prometteuses:
* Plasma-membrane ionique (SOEC, MIEC)

* Plasma-liquide : source d’hydrogénation a
bas cotit

« Régénération d’adsorbant de CO,, (DAC ?)



