Stockage et transport de l’hydrogène : solutions matériaux composites pour les réservoirs d’hydrogène haute pression

Jean-Paul Moulin
Material Science Director - Arkema
Solutions matériaux composites pour les réservoirs d’hydrogène haute pression

1. Arkema’s hydrogen initiatives
2. Liners for High pressure vessels
3. Thermoplastic Composites Shell
 - Elium® tank type IV
 - UDX® tapes type V
4. SHM sensors
5. Conclusion
Hydrogen – European Roadmap & Arkema Initiatives

Arkema M^2H_2 project is part of "IPCEI Hy2Tech", the first ever Important Project of Common European Interest in the hydrogen sector.

Materials for Hydrogen Mobility

- Thermoplastic recyclable type IV & type V high pressure vessels for cars, trucks, buses and trailers
- Membranes for fuel cells
- Coatings and composites for bipolar plates
- Piezoelectric sensors for high pressure vessels SHM
Rilsan® Liners for High Pressure Vessels
Arkema’s flagship Rilsan® PA11 - overview

1. High performance material with 30+ year track record in many demanding markets
 - Transport
 - O&G pipes

2. 100 % biobased with secure availability and responsible sourcing of castor beans

3. A lower carbon footprint and ambitious decarbonization goals

4. Global production network with 2 monomer plants (Europe, Asia) and 4 polymer plants

5. Demonstrated capacity to invest: >450M€ announced in last years to increase capacity by +50%

6. Leading recycler of high performance polymers Acquisition of Agiplast in 2021
Arkema is reducing the carbon footprint of Polyamide 11

Cradle to Gate

*Climate change*² (comparative data vs standard fossil based polyamides)

- **Standard ISO 14040/44 (kg eq. CO₂/kg)**

2023

- 70%

2030 target

- 50%

Fossil-based polyamides

Bio-based PA11

Biogenic carbon impact and **Biomethane** energy use

Boxes and Arrows Diagram:

- **Castor Plant** -> **Castor Beans** -> **Castor Oil**

- **Polyamide 11**
Rilsan® PA11 Hydrogen Tank Liner

A balanced set of properties

- Low H2 permeation
- Low moisture uptake
- Impact resistant

Adapted to main processes

Rotomoulding
- All tank sizes
- Low CAPEx
- High processability
- Mechanical performance
- Techno for boss-to-liner adhesion

Blow Molding
- High productivity
- Multi-layer structures
- No oxidation (high quality weld line)
- Stable process for large liners

Extrusion - Welding
- Long tanks
- Thickness control
- Wide portfolio of solutions
- Weldability
- Large tube extrusion experience (O&G)
Thermoplastic Composites for High Pressure Vessels
Advanced Materials: High Performance Thermoplastic Composites

Main thermoplastic polymer base chemistry

Rilsan® Matrix
- Carbon fiber / PA & PPA UDX® Tapes
- Main Market: Automotive & Hydrogen

Elium®
- Liquid reactive acrylic resins
- Main Markets: Wind energy, Transportation, Building & Infrastructure, Sport & Leisure

Kynar®
- PVDF powders for composite manufacturing
- Arkema/Barrday® JV UD tapes for Oil and Gas

Kepstan®
- PEKK powders for composite manufacturing
- Collaboration agreement Carbon/PEKK UD tapes for Aeronautics & Space

ARKEMA/BARRDAY® JV UD tapes for Oil and Gas.
Thermoplastic composites solutions

→ **ELIUM**[®]

Thermoplastic composites with thermoset like processing technologies

- Substituting thermoset resins for high level of **recyclability** (chemical or mechanical)

- A **large range of composites processing** technologies: RTM, SMC, Pultrusion, wet-winding...

- Thermoplastic process possibilities: post forming welding...

→ **UDX^{tapes}**

High performance polyamide-based unidirectional fibers tapes for demanding applications

- Unique **biobased high-performance polymers** or PEKK and fibers **impregnation** process for high mechanical performances tapes

- Fast development of **automatized thermoplastic tapes processing technologies**: robotized fiber placement (AFP, ATL..), and hollow body (winding, braiding...) associated with injection molding productive process.
ARKEMA material choice for Type IV & V tanks

Type IV : TP Liner + TP Composites

Material
- Carbon / Elium® winding
- Rilsan® Liner

Process
- Tape winding + UV / Heat (dual cure)
- Rotomoulding
- Blow molding or injection + welding

Type V : TP Continuous – monolithic structure

Material
- Carbon / PA or PPA tapes
- Rilsan® Liner

Process
- Tape winding + heat (Laser, IR,....)
- Tape winding or molded + heat for 1st layer miscibility

TP COMPOSITES ADVANTAGES
- Better fatigue / resistance to cycling vs thermosets
- No explosion at burst test : melting & H2 jets (directional)
- Recycling abilities
- Manufacturing : important lead time reduction

L’Hydrogène vecteur énergétique et réactif chimique - CNC
Elium® wet winding

ELIUM® C599 E resin

- UV Photoiniator and Peroxide
- Productivity improvements: low viscosity and low post curing time

UDX® polyamide tapes winding

High Payload Hydrogen Trailers with New Composites Cylinders - European Roadtrhyp project

- New thermoplastic composite tubes (Type V) to maximise the quantity of H2 transported
 - payload of 1.5 ton of H2 with 700 bar tubes
 - Recyclable thermoplastic material
 - https://road-trhyp.eu/
Elium® the liquid thermoplastic resin designed for recycling

CHEMICAL RECYCLING

- Unique property of Elium® resins to be **de-polymerized** thanks to a thermolysis process
- Separation of resin and fiber reinforcement
- Collection of the original monomer of the resin
- Possibility to reuse the monomer to create the new resin in a close loop recycling process

MECHANICAL RECYCLING

- Grinding and blending with a virgin thermoplastic (PMMA, ABS, PVC...)
- Reuse in deposition or extrusion process
- **Enhanced properties** compared to host matrix
Mechanical Properties of Elium® materials

Depolymerisation

Circularity

Mechanical Compounding

Upcycling

- **Tensile Modulus in GPa**
- **Tensile Strength in MPa**

<table>
<thead>
<tr>
<th>Elium®</th>
<th>Recycled Elium®</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>206</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

- **Flexure Modulus in GPa**
- **Flexure Strength in MPa**

<table>
<thead>
<tr>
<th>PolyPro GF Mat</th>
<th>PolyPro GF 50</th>
<th>Elium® Panel 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>72</td>
<td>104</td>
</tr>
<tr>
<td>57</td>
<td>6.2</td>
<td>8.8</td>
</tr>
</tbody>
</table>

- **Traction Modulus in GPa**
- **Traction Strength in Mpa**

<table>
<thead>
<tr>
<th>ABS GF20</th>
<th>ABS-Elium® 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>6.9</td>
</tr>
<tr>
<td>69</td>
<td>76</td>
</tr>
</tbody>
</table>

*Properties are based on Elium®, Glassfiber NCF Biax 600 +/- 45°, Fiber content 46.7%.

*Properties are based on Elium®, Coupons made by compression.

*Properties are based on Elium®, Coupons made by injection.
Structural health monitoring of hydrogen tanks

PIEZOTECH
Piezotech® FC

3 MAIN FEATURES

Piezoelectric
Conversion of mechanical energy (stress, strain) into electrical energy (voltage, current) and vice versa.

Printable
We develop a range of high purity polymers and inks adapted to various printing techniques to obtain thin and homogeneous layers.

Customizable
Flexibility of Piezotech products is paving the way for high degrees of freedom in terms of size, shape, number of sensing elements and substrates.
WHAT

Record and localize **acoustic waves** resulting from mechanical modifications of the composite using **piezo-active polymers (SHM)**.

Detection of a **brutal event** (impacts/shocks, strain, pressure etc.).
Detection of a **premature wear/degradation** (delamination, cracks, fatigue etc.).

WHEN

When the tank **fills/empties**.
When the tank **suffers a shock** (damage from an object on the road etc.).

WHY

- **Security**: Increasing the security of tanks by **fatigue identification**.
- **Optimal costs**: Optimizing the cost by **optimizing the amount of carbon**.
- Realizing the **requalification** of the tank in real time.
- Measuring the residual life of the tank for **second life use**.

Flex PCB with piezo acoustic sensors

FOR SMART COMPOSITES (H₂ tanks use case)
Conclusions

1. Arkema’s hydrogen initiatives
2. Liners for High pressure vessels
3. Thermoplastic Composites Shells
 3.1. Elium® tank type IV
 3.2 UDX® tapes type V
4. SHM sensors
5. Conclusion
As a conclusion – Hydrogen mobility and Sustainability

→ LCA FCEV – ADEME 2020*

→ FCEV improvements expected

Lightweighting
- Less materials
- Less processing / energy for manufacturing
- Reduce energy consumption.
 (today FCEV 16% heavier vs Diesel)

Reduce use of materials with high environmental impacts
- Carbon fibers
- Lithium and cobalt for batteries
- Platinum for FC

Increase equipment’s durability / lifespan
- 300 000 km vs 200 000 km
 =1/3 less abiotic resources

Recycle
- Decrease abiotic resource impact by 50% (platinum and carbon fiber)

ADEME, Luc Bondineau, Prestataires : SPHERA, Cécile Querleu, Alexander Stoffregen, ; GINGKO 21, Hélène Teulon, Analyse du Cycle de Vie relative à l’Hydrogène – Production d’Hydrogène et Usage en Mobilité Légère, Septembre 2020