Industrial challenges of alkaline electrolysis

Benoît BARRIÈRE – McPhy Energy

3èmes Rencontres académie-industrie du CNC
A leading low-carbon H₂ Equipment Manufacturer

History

- **2024**
 - Opening of the Gigafactory
 - Partnerships materialization

- **2022**
 - R&D acceleration
 - Industrial scale up

- **2020**
 - 180 M€ raised
 - Technip & Chart partnerships

- **2018**
 - EDF partnership

- **2013**
 - Refueling stations development
 - Enertrag’s electrolyzer acquisition
 - PIEL acquisition

- **2008**
 - Incubation with CEA & CNRS

People & footprint

- 260 employees
- 24% women
- 25 nationalities
- 50+% PhD / engineers

Our products

- **Electrolyzers**
- **Refueling stations**

Key figures

- Revenue
- Backlog
- People

Shareholders & partners

- Listed on Euronext Paris

Pan-European Pure Player
McPhy pressurized alkaline technology
Stack is at the heart of H₂ production, but needs a full industrial platform around

1. Transformer & Rectifier Unit (TRU)
 - e-
 - 20 kV AC >> 500 V >> 500 V DC
 - Transformer
 - Rectifier
 - [4-5] kWh per kgH₂

2. Stack
 - Gaseous products & liquid KOH
 - H₂O & KOH (28%)
 - H₂ (90%)
 - O₂ (2%) H₂O (8%)
 - O₂ (99%)
 - H₂ & H₂O

3. Water Demineralization Unit
 - Tap water
 - 20 liters per kgH₂
 - Demineralized water
 - 10 liters per kgH₂

4. Electrolyzer Process Unit (EPU)
 - H₂ & waste
 - (95%) & H₂O (5%) & O₂ traces
 - After cooling

5. Purification and Drying Unit (PDU)
 - Purified H₂
 - ISO 22734 purity compliant (>99.995%)

6. Client
Main market driver: Green H$_2$ industrial applications...

Estimated Cumulated Installed Electrolysis Capacity [in GW]

Market by Region [GW]
- Europe: 39 GW (2021), 15 GW (2025), 7 GW (2030)
- Americas: 26 GW (2021), 18 GW (2025), 9 GW (2030)
- MENA: 9 GW (2021), 15 GW (2025), 3 GW (2030)
- Asia & Oceania: 3 GW (2021), 4 GW (2025), 1 GW (2030)

Market by Project Size [GW]
- <100 MW: 33 GW (2021), 15 GW (2025), 4 GW (2030)
- >100 MW and <1 GW: 27 GW (2021), 10 GW (2025), 7 GW (2030)
- >1 GW: 92 GW (2021), 33 GW (2025), 15 GW (2030)

Market by Technology [GW]
- PEM: 29 GW (2021), 27 GW (2025), 9 GW (2030)
- SOEC: 54 GW (2021), 27 GW (2025), 15 GW (2030)
- ALK: 0 GW (2021), 7 GW (2025), 3 GW (2030)
- Other: 7 GW (2021), 4 GW (2025), 1 GW (2030)

Sources: IEA, Hydrogen Council, Desk research
... to abate 2% of worldwide CO$_2$ emissions

Grey H$_2$ production = 100 Mt/year
 = ca. 800 Mt/year of CO$_2$
 = ca. 2% of world GHG emissions

1 MW of electrolysis = 18 kg H$_2$/hour
 = 140 t H$_2$/year (at 90% average load) / Grid connected
 = 80 t H$_2$/year (at 50% average load) / Renewable Energy

50 GW = 4-7 Mt H$_2$/year
 = 25-50 Mt CO$_2$ emission saved (70-90% saved)

Sources: IEA, Hydrogen Council, Desk research
Answering large industrial needs
McPhy building blocks of 4 x 4 MW stacks with 16 MW EPUs

Our next building block: 4 x 4 MW stacks with a 16 MW EPU for large capacity industrial applications
The different challenges for large-scale deployment
| A mix of chemical, physical & engineering challenges

Chemical challenges at the cathode level

- 3 industrial technologies: (1) NiS, (2) microporous Ni, (3) Pt-based electrodes
- Many emerging technologies
- The heart of electrolysis
- The most expensive part
The different challenges for large-scale deployment
| A mix of chemical, physical & engineering challenges

Chemical challenges at the **cathode** level

Physical challenges at the **cell** level

- Flow of electrolyte as homogeneous as possible
- Ohmic losses brought by hydrogen bubbles
The different challenges for large-scale deployment

A mix of chemical, physical & engineering challenges

Chemical challenges at the **cathode** level
Physical challenges at the **cell** level
Engineering challenges at the **stack** level

- Automatization of stack production
- Polymer vs. metal frames
- Electronic conduction at the electrodes level
- Safety management of internal pressure
The different challenges for large-scale deployment
| A mix of chemical, physical & engineering challenges

Chemical challenges at the **cathode** level
Physical challenges at the **cell** level
Engineering challenges at the **stack** level
Process safety challenges at the **EPU** level
• Explosive & self-igniting mixture 4+% \(\text{O}_2 \) in \(\text{H}_2 \)
The different challenges for large-scale deployment

| A mix of chemical, physical & engineering challenges

Chemical challenges at the **cathode** level
Physical challenges at the **cell** level
Engineering challenges at the **stack** level
Process safety challenges at the **EPU** level
Digital challenges at the **multi-stack platform** level

- Optimization management of 100+ stacks to cope with constantly changing electrical load