

GENVIA

Electrolyse à Haute Température – Une technologie à haut rendement pour la transition énergétique

Patrice Tochon, R&D Manager

- Established 1 March 2021, based on 40 patents and 15 years of R&D
- > Today more than 100 employees
- Maturing, industrialising and developing industry solutions with Solid Oxide Technology

Contextual Situation of Electrolysis

Hydrogen Production by Water / Steam Electrolysis

Genvia - Private

Interest of High Temperature Electrolysis

Why High temperature Steam Electrolysis (HTSE - SOEL)?

HIGH EFFICIENCY TECHNOLOGY

 $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$

ΔH Working in gas/liquid mode saves 15% in Energy

△G : Rising in T saves15% additional electricity

➡ 30% gain for high temperature steam electrolysis
When coupled to a heat source (~ 150°C) to produce steam

SOEL operating range = 700-850°C

EFFICIENCIES

> High temperature steam electrolysis - SOEL

The key components of the different technologies

Scientific and Technologic Developments

Cell optimization to reach the best combination of performance/durability

Source: Monaco et al., J. Electrochem. Soc. 166 (15), (2019) F1229-F1242

- New active materials compositions
- New cell architecture
- New Processes

6

Electrode Oxygen Mixed oxide LSCF	(La _{0.60} Sr _{0.40}) _{0.95} Co _{0.20} Fe _{0.80} O ₃₋
Diffusion barrier Mixed oxide CGO	(Ce _{0.90} Gd _{0.10})O _{1.95}
Electrolyte Doped zirconia	(Y ₂ O ₃) _{0.08} (ZrO ₂) _{0.92}
Electrode H2 cermet Ni – YSZ	Ni – (Y ₂ O ₃) _{0.08} (ZrO ₂) _{0.92}
Mechanical Support Cermet Ni/YSZ	Ni – (Y ₂ O ₃) _{0.03} (ZrO ₂) _{0.97}
Current collector Nickel	Ni

A complex multi-layer architecture combining specific mixed oxides :

- Conductivity Ionic & Electronic
- Microstructure control Porous vs. Dense
- High Temperature 700-800°C

Scientific and Technologic Developments

Stack Development

Performance: optimize pressure drops and electrical contact layers

Stacking: increase number of SRU to increase power/stack

Manufacturability and Integration in module: Design devices to handle and transport the stack

Sealing : No leakages

Lifetime & Performance: Improve cell performance and durability

 \rightarrow Co-Current Engineering and Model-Based Design

7

Scientific and Technologic Developments

System Development

Performance: Overall Efficiency Lifetime: Same behaviour for all the modules/stack Manufacturability: Automatized process of assembly Cost: Toward S Giga factory in 2030

Genvia - Private

> TWO STREAMS FOR OUR PRODUCT DEVELOPMENT

Building benchmark and experience with the SOEL200 EXP in 2023

Delivering performance with a new design, the H-Pod Desing frozen in 2026

GENVIA FIRST STEPS

Genvia - Private

GENVIA KEY ACHIEVEMENTS AND NEXT STEPS

Stack prototyping

 \rightarrow 7000+ hours of test

→ Successful performance tests

Next step:

Improve stack longevity and reliability

System Engineering

- → Detail application engineering for prototype completed
- → Launch production of prototype

Next step:

Scale to designing applications for all demonstrator use cases

Stack manufacturing

 \rightarrow Pilot line completed

Next step:

Increase throughput, improve quality and design automation for gigafactory

Cooling Unit

Annealing Furnace

Industrial Coupling : CCUS (SOEC vs. Co-SOEC)

Industrial Coupling : Haber-Bosch

> Nuclear Coupling

> Present nuclear Reactors :

• Electrical coupling + thermal network

> New EPR nuclear Reactors :

Low temperature coupling (<150°C)

 Low, Medium to high temperature coupling (from 150°C, to 550°C and 800°C)

