

Hydrogène solaire : avancées technologiques et défis scientifiques

V. Artero

Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA Grenoble <u>www.solhycat.com</u>

Pourquoi de l'hydrogène solaire?

Transition Net Zero Emission en 2050

- 1. Sobriété
- 2. Electrification massive
- 3. Développement de l'hydrogène vert pour couvrir 20% des besoins énergétiques mondiaux

Fortes contraintes sur le réseau électrique qui va devoir s'adapter à un trafic de 2 à 4 fois plus important et à des sources de production d'électricité renouvelables non pilotables

La production d'hydrogène est une solution pour le stockage massir des énergies renouvelable, et notamment de l'énergie solaire, de manière , additionnelle et décentralisée sans impacter le réseau

Aujourd'hui : des fermes d'hydrogène solaire

PV/electrolyser (PV+E) **TRL 9**

Panneaux photovoltaïques captifs (pas de frais d'utilisation du réseau) Électrolyseurs alcalins (gestion de l'intermittence complexe)

9,5 GW d'énergie solaire et 7,4 GW d'électrolyseurs d'ici 2030

Coûts d'investissement et de maintenance élevés qui restreignent cette solution aux vallées de l'hydrogène

Nécessité de développer des systèmes plus intégrés et plus flexibles

Un grand choix de technologies, plus ou moins matures

Efficacité, robustesse et durabilité

5-10 % de rendement de conversion STH pour une rentabilité économique

L'efficacité conditionne l'empreinte au sol

10-20 ans de fonctionnement en conditions ambiante et intermittente

EROI >10

Limiter le recours aux métaux critiques pour un déploiement à grande échelle

> Développement de nouveaux matériaux

Développement de prototypes à l'échelle

Prototypes IPEC intégrés

<image>

17% rendement STH

Cellule solaire III-V sous concentration Electrolyseur PEM

<u>cea</u>

HEVO-SOLAR[™]

FUSION FUEL[™]

Prototypes IPEC intégrés

Cez

Cellules solaires tandem Si/PK tandem de haute efficacité 9 cm² de surface active

STH ~10 % en conditions simulée (1 sun)

Tension (V)

Fabrication additive de la plaque de flux cathodique en acier avec circuit de refroidissement intégré _{H2}

irig liten isec

Yang et al. *Applied Energy* 2018, 215, 202 Cronin and coll. *Energy Environ. Sci.*, 2014, 7,3026

Maragno et al. manuscript in preparation7

Préparation de modules de 9 cellules IPEC

EASI Fuel <u>European</u> <u>Autonomous</u> <u>Solar</u> <u>Integrated</u> fuel station

Panneau de contrôle

Les sulfures métalliques pour s'affranchir des métaux nobles en électrocatalyse

FeMo-co: site actif de la N₂ase

Site actif de la CODH

Sites actifs des H₂ases

Enzyme	Reaction	Process	Application
Hydrogenase	$2H^+ + 2e^- \rightleftharpoons H_2$	Hydrogen evolution reaction Hydrogen oxidation reaction	Water electrolysis Hydrogen fuel cells
Cytochrome c oxidase or Laccase	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	Oxygen reduction reaction	Fuel cells
Formate dehydrogenase	$CO_2 + 2H^+ + 2e^- \rightleftharpoons HCOOH$	CO ₂ reduction reaction	Co-electrolysis of water and CO_2
Carbon monoxide dehydrogenase	$CO_2 + 2H^+ + 2e^- \rightleftharpoons CO + H_2O$	CO ₂ reduction reaction	Co-electrolysis of water and CO_2
Water oxidase (Oxygen-evolving centre of photosystem II)	$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	Oxygen evolution reaction	Electrolysis
Nitrogenase	$N_2 + 6H^+ + 6e^- \rightleftharpoons 2NH_3$	Nitrogen fixation	Ammonia production

Un seul précurseur pour le dépôt des deux catalyseurs de dégagement d'hydrogène et d'oxygène

[Co(WS₄)₂]²⁻ Co(NO₃)₂.6H₂O et (NH₄)₂[WS₄] dans 0.1 M KPi (pH 7)

<u>cea</u>

Tran *et al., Energy Environ. Sci.,* **2013**, 6, 2452-2459 Nguyen *et al., Chem.Asian J.,* **2018**, 13,1530-1534

Des feuilles artificielles très simples à fabriquer

<u>cea</u>

Dépôt de catalyseurs: 10 min

Cathode side

Anode side

After

Before

Before

After

12

Photosynthèse artificielle

Catalyse multiélectronique efficace

Conversion de l'énergie lumineuse en potentiel électrochimique

Absorption au niveau de chromophores moléculaires

Séparation de charge spatiale par une cascade de transferts d'électrons

Cellules à colorants (dites de Grätzel)

Photovoltaïque organique

Vers des cellules photo-électrochimiques (PEC)

Cellule photo-électrochimique tandem à jonctions liquides

14

Des composants PV aux photoélectrodes..

Kaeffer et al., J. Am. Chem. Soc. 2016

Bourgeteau *et al.*, Energy Environ. Sci 20132016

Record actuel: une cellule PEC avec un rendement de 4.3%

Conclusions

Efficace

Durable

Robuste

- Développement de nouveaux matériaux à propriétés améliorées
 - Investir en génie chimique et génie des procédés (modélisation, prototypage...)
- Créer les conditions d'insertion économique et socio-technique de l'hydrogène solaire
 - mettre en œuvre des conditions de fonctionnement sures
 - sécuriser la source d'eau, par exemple en la sourçant dans l'atmosphère -

Chaire industrielle ANR-ENGIE PROSPER-H2

2022-2026

DRF-IRIG DRF-IRAMIS, DRT-LITEN, DES-ISEC Laboratoire PACTE (UGA/CNRS) **Engie- Lab CRIGEN engie**

Production d'hydrogène par photo-électrolyse de l'eau

Développer une technologie commercialisable pour une production décentralisée d'hydrogène vert

Solar Energy for Carbon-Free Liquid Fuel

Démonstrateur

> 0.1 m².

5-10% rendement

ΤΟΥΟΤΑ

erc

M.Chavarot-Kerlidou			
A. Morozan			
Reuillard			
PhD students			
C. Bourguignon A. Haurez			
M. Haake			
J. Schild			
E. Giannoudis			
Duc Nguyen Ngoc			
N. Coutard			
N Queyriaux			
D. Brazzolotto			
S. Gentil			
J. Toupin			
Y Oudart			

Post-docs

C. McMannus

J De Tovar	Yao Fu		
M. Fadel	C. Tapia		
N. Randell	N. Mroweh		
S. Chandrasekaran T. Rosser			
C. Windle	T. Straistari		
D. Pramanik	J. Massin		
R Jane	S. Roy		
T N Huan	C. Baffert		
A Fihri	P-A Jacques		
M Razavet	P D Tran		
V Fourmond	S Cobo		
E S Andreiadis	T. R. Simmons		
G Berggren	J-F Lefebvre		

Collaborations

CEA-IRIG

SyMMES Caroline Keller Jingxian Wang Pascale Chenevier Dmitry Aldakov

CEA-IRAMIS

Nimbe Tiphaine Bourgeteau Bruno Jousselme Bernard Geffroy

CEA-ISEC Sophie Charton

CEA-LITEN Muriel Matheron

Toyota Motor Europe Hannah Johnson

USTH Hanoi Phong D. Tran Duc Nguyen Ngoc

