

CHEMISTRY: MOLECULES TO MATERIALS

Matériaux de coeur de pile à combustible et d'électrolyseur basse temperature : performance, durabilité et soutenabilité

Deborah Jones CNRS - Université Montpellier - ENSCM, Montpellier, France Materials for low temperature fuel cells and electrolysers: performance, durability and sustainability

Deborah.Jones@umontpellier.fr

UNIVERSITÉ DE UNIVERSITÉ DE

Challenge

Performance – Durability through PGM and PFSA

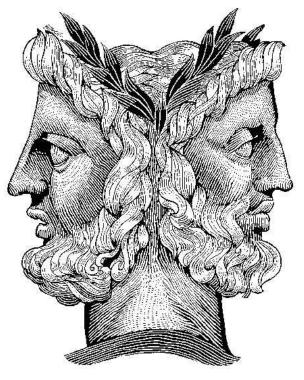
Hydrogen

technologies are

an essential

component of

routes to net

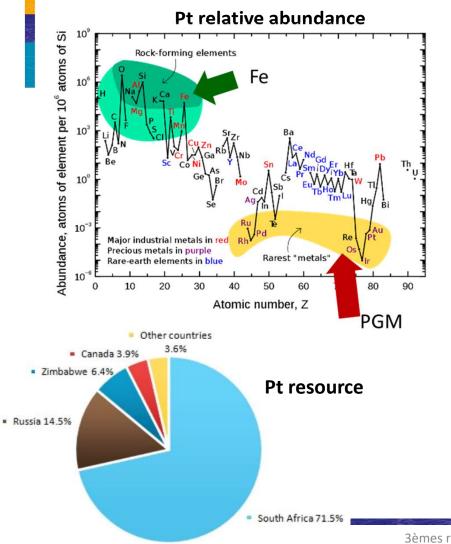

zero greenhouse gas emissions by 2050

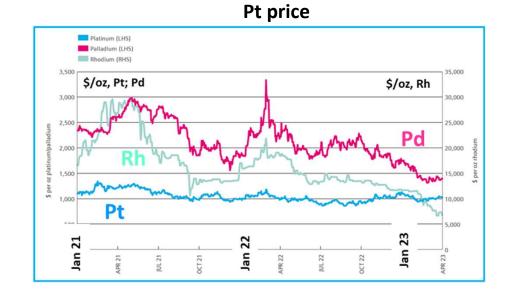
Clean hydrogen is a key

enabler as an energy

vector and a sustainable

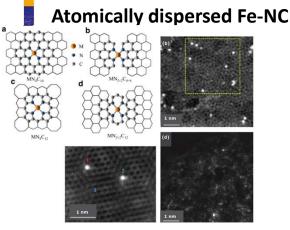
chemical feedstock




Current fuel cells and electrolysers are heavily dependent on platinum group metals and other critical raw materials

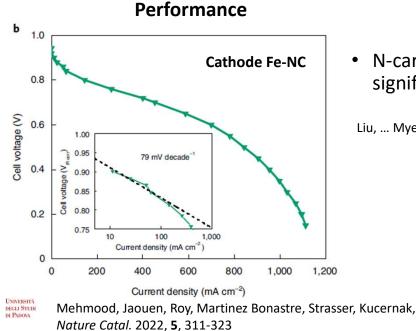
Proton exchange membrane fuel cells and electrolysers use perfluorosulfonic acid (PFSA) membranes. PFSA is included in the PFAs debate

Addressing the sustainability and criticality of electrolyser and fuel cell materials to safeguard the future development of the hydrogen sector


PGMs – rarity, geographical location, price

- Reduce Pt loading ; increase kW power obtained with a fuel cell per gram Pt
- Replace Pt by more abundant elements
- Recycle

Replacing Pt at the PEMFC cathode


Jaouen, Jones, Artero, Kucernak, Strasser, Johnson Matthey Technol. Review, 2018, **62**, 231-255.

Critical Raw material Electro-catalystS replacement ENabling Designed pOst-2020 PEMFC (CRESCENDO) Clean Hydrogen JU 2018-2021

Coordination ICGM

www.crescendo-fuelcell.eu

Durability

 N-carbon coating of Fe-NC using CVD significantly reduces the rate of voltage loss

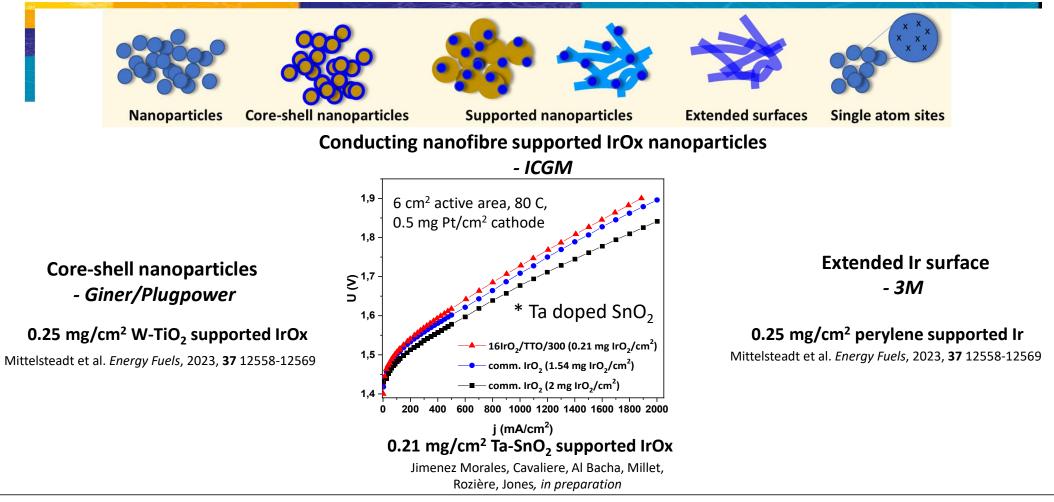
Liu, ... Myers, Litster, Cullen, Wu, Nature Energy, 2022, 7, 652–663.

- The current performance of MEAs with PGM-free cathodes with air feed to the cathode is low and, despite the low catalyst cost, FC stacks using PGM-free cathodes are not cost-effective for high power applications
- Fe-NC catalysts reduce dependence on CRM, and more research is needed to improve their activity and durability.

Iridium – oxygen evolution reaction of PEMEL

- 200 mV lower overpotential for OER than Pt
- Amongst the most corrosion resistant PGMs
- Amount of Ir needed for future PEMEL growth depends on the forecast electrolysis capacity
- <1 GW PEMWE capacity today, France targets 6,5 GW, EU targets 100 GW by 2030

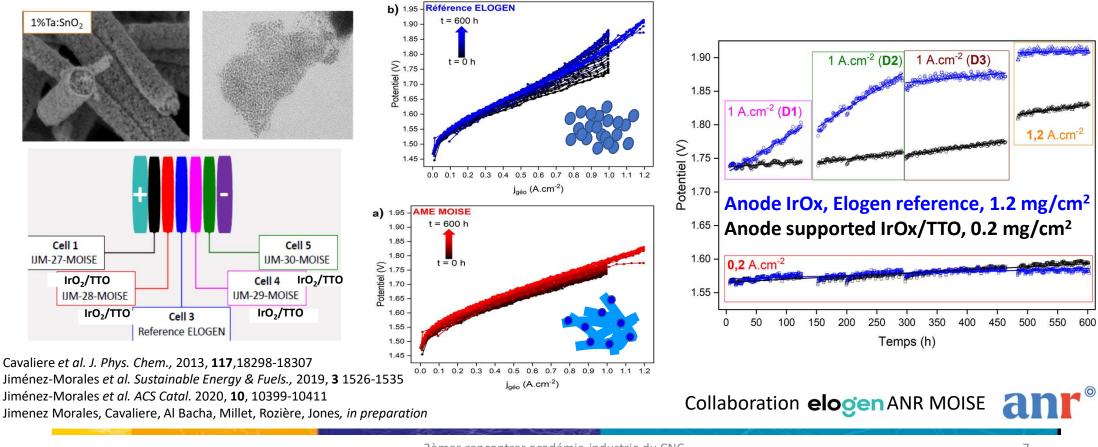
Ir requirement mg/W


• Currently, a 1 MW PEM electrolyser uses 0.4 kg Ir, Ir loading 1.5 mg/cm²

Matching Ir requirement to expansion in PEMEL capacity

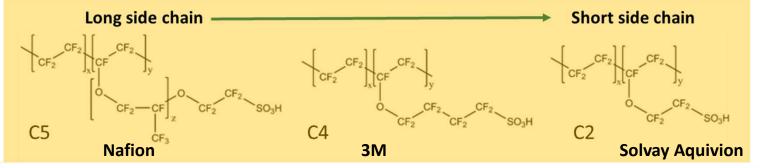
- Reduce Ir loading
- Improve performance to increase current density
- Recycle: Recycling reduces the amount of new Ir needed for new PEMEL, helping to balance supply and demand, and to stabilise the Ir market price

Clapp, Zalitsis, Ryan, *Catal. Today*, 2023, **420** 114140 Mittelsteadt et al. *Energy Fuels*, 2023, **37** 12558-12569


Materials strategies to reduce Ir loading

Status: 0.25 mg/cm² loading without impacting performance with dispersed/supported IrOx \rightarrow 1 MW requires 400 g ca. 60 g Ir

Durability even with Ir thrifting


- Continuous preparation methods to upscale IrOx nanoparticles and TTO nanofibres ٠
- 250 cm² electrodes and MEAs for rainbow short stack characterisation •

Perspective - PEMFC performance state of the art with PFSA

Current technology readiness is due (amongst others) to the exceptional properties of PFSA

More amorphous Lower IEC before becoming water soluble Lower Tg Temperature of operation to 80-90 °C Higher gas crossover

Higher crystallinity Higher IEC before becoming water soluble Higher Tg Temperature of operation to 110 °C Lower gas crossover on operation

Jones, Materials Matters, 10 (3) (2015) 88-94

Paradigm shift: From conductivity to conductance

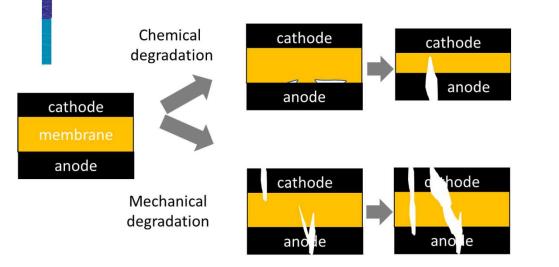
Most substantial improvements in fuel cell membrane performance obtained by simply *reducing* the membrane *thickness* \rightarrow *high conductance membranes*

Antagonistic requirements: Thin membranes for high conductance, but most other properties – chemical and mechanical stability, gas crossover – are improved with thicker membranes


			Ionic	
Membrane	EW	Thickness	Conductivity	Conductance
		(µm)	(S/cm)	(S/cm^2)
NAFION® 117	1100	200	$0.14^{\rm a}, 0.10^{\rm b}$	5-7
NAFION® 112	1100	60	0.10 ^b	17
Dev. Dow	800	100	0.15 ^b	15
GORE-SELECT®	1100	20	$0.052^{a}, 0.053^{b}$	26
GORE-SELECT®	1100	5	0.028 ^a	56
GORE-SELECT®	900	12	0.096 ^b	80

^a z-direction, sulfuric acid immersed sample measured with a four-point probe

^b x-y direction, high-frequency measurement for membrane immersed in deionized water.


Kolde, Bahar, Wilson, Zawodzinski, Gottesfeld, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, Electrochemical Society Proceedings, Volume 95-23, P. 193-201 ©1995

Target membrane thickness

 $80-100~\,\mu m$ for water electrolysis

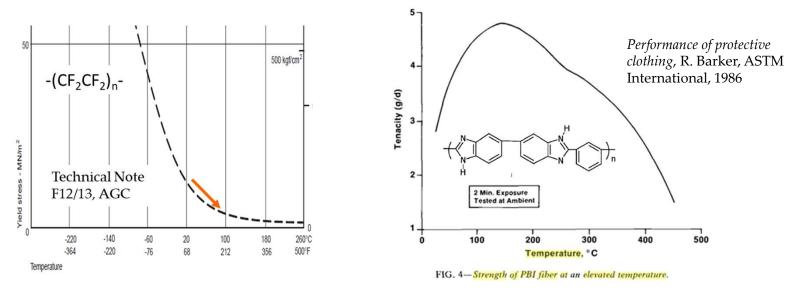
Chemical and mechanical degradation on fuel cell operation

Zatoń, Roziere , Jones, Sustainable Energy Fuels, 2017, **1**, 409-438

R_f−**CF**₂**COOH** + **•OH** → **R**_f−**CF**₂**•** + **•OH** → ... → **R**_f−**COF** + **HF R**_c−**COF** + H₂**O** → **R**_c−**COOH** + **HF**

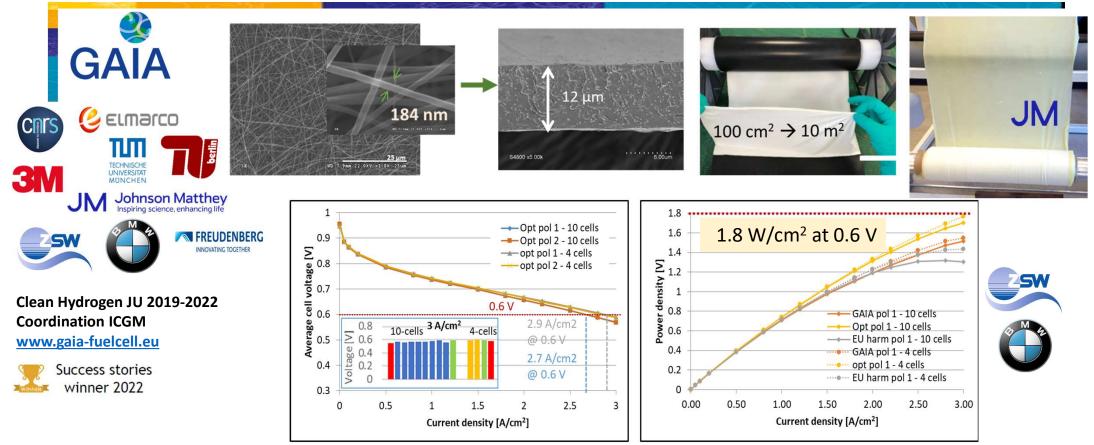
Alavijeh et al., *J. Electrochem. Soc.*, 2015, **162**, F1461-F1469

Mechanical


- Dimensional change between wet/dry conditions, especially for low EW/high IEC membranes
 → fatigue-induced fracture
- Thin membranes <20 μm for low electrical resistance and water back diffusion

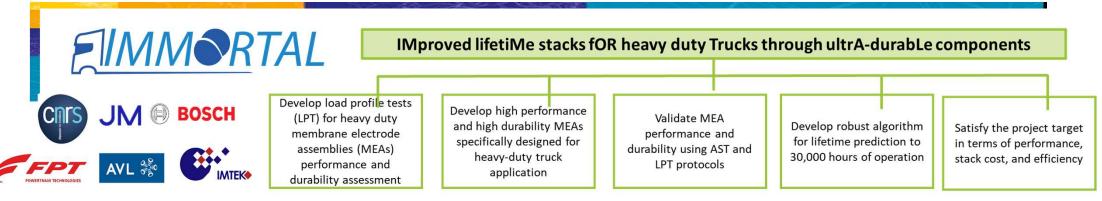
Chemical

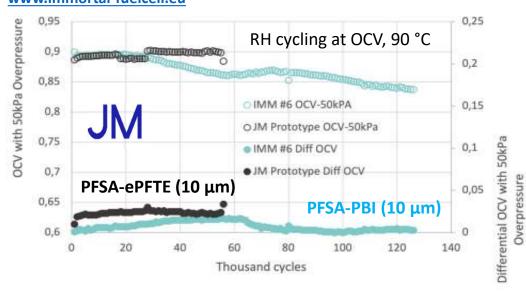
 Reactive oxygen species generated during FC operation that attack membrane, causing thinning via main chain degradation - "unzipping", attack at ether link, or tertiary carbon and cleavage of SO₃H « Active » membrane reinforcements


Disruptive reinforcement technology

• **Multifunctional reinforcements**: providing mechanical strength and radical quenching properties, and increased efficiency and safety as supports for radical scavengers and recombination catalysts

- Polybenzimidazole (PBI) has the highest tensile, shear, and compressive strength of any thermoplastic
- Mechanical strength of PBI increases with temperature up to ca. 150 °C
- Basic character allows ionic cross-linking or hydrogen bonding with PFSA or sulfonated hydrocarbons
- Electrospun polymer webs range of polymer type with tuning of chemical and mechanical stability and interactions with PFSA matrix


High performance membranes for LDV PEMFC


- PBI reinforced PFSA membranes (13 μm) in MEAs with 0.45 mg/cm² Pt total provided 1.8 W/cm² at 0.6 V, short stack testing in an automotive drive cycle, including 5% time at 105 °C.
- High power MEAs reduce MEA cost/kW

WO2016020668A1 to CNRS-UM-JM Zaton, Cavaliere, Buche, Rozière, Jones *in preparation*

Durable membranes for HDV PEMFC

Clean Hydrogen JU 2021-2024 Coordination ICGM www.immortal-fuelcell.eu

- Combined mechanical/chemical accelerated stress test at 90 °C on PBI nanofiber reinforced PFSA membrane, 10 µm thickness
- 120,000 AST cycles, i.e. around 2,100 hours AST, to end of test with no rupture failure
- Surpassed previous generations and reference membranes in MEAs of otherwise identical construction

Zaton, Cavaliere, Nesling, Buche, Rozière, Jones in preparation

Spotlight on PFAs

- Increasing international scrutiny of poly and perfluoroalkyl substances (PFAs) for their persistence in the environment, mobility, bio-accumulation
- May 2020: 5 EU countries initiated a call for universal PFAs restriction; the European Chemicals Agency published a restriction proposal in February 2023.
- Hydrogen Europe Hydrogen Europe Research, European industries have contributed information, data ...
- Fluoropolymers are essential in current membrane electrode assemblies in PEM fuel cells and electrolysers as hydrophobic agents, binders, membrane reinforcements, seals, ionomer and membrane: PTFE, ETFE, perfluorosulfonic acid (PFSA)

 <u>https://news.3m.com/2022-12-20-3M-to-Exit-PFAS-</u> Manufacturing-by-the-End-of-2025

Current technology readiness is due (amongst others) to the exceptional properties of PFSA and advances in understanding of membrane degradation – and its mitigation - on operation ECHA restriction proposal: Overall, ALL PFAs to be banned with an 18-month transition period after entry into force (potentially in 2025/2026), with a ban on manufacture, placing on market and use of PFAs

5 or 12 years' derogation granted for sectors that have no ready alternatives

Proposal acknowledges fluoropolymer use in PEMFC, PEMEL

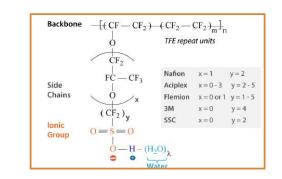
But only derogates on PEMFC (6.5 years period) not on PEMEL

Massive potential impact on timely implementation of PEM technologies for H_2 generation and H_2 end uses

...Spotlight on PFAs

- Increasing international scrutiny of poly and perfluoroalkyl substances (PFAs) for their persistence in the environment, mobility, bio-accumulation
- May 2020: 5 EU countries initiated a call for universal PFAs restriction; the European Chemicals Agency published a restriction proposal in February 2023.
- Hydrogen Europe Hydrogen Europe Research, European industries have contributed information, data ...
- Fluoropolymers are essential in current membrane electrode assemblies in PEM fuel cells and electrolysers as hydrophobic agents, binders, membrane reinforcements, seals, ionomer and membrane: PTFE, ETFE, perfluorosulfonic acid (PFSA)
- <u>https://news.3m.com/2022-12-20-3M-to-Exit-PFAS-</u> Manufacturing-by-the-End-of-2025

Future sustainability considerations for PEMFC and PEM electrolysis must include possible replacements for PTFE and PFSA. What alternatives ? ECHA restriction proposal: Overall, ALL PFAs to be banned with an 18-month transition period after entry into force (potentially in 2025/2026), with a ban on manufacture, placing on market and use of PFAs


5 or 12 years' derogation granted for sectors that have no ready alternatives

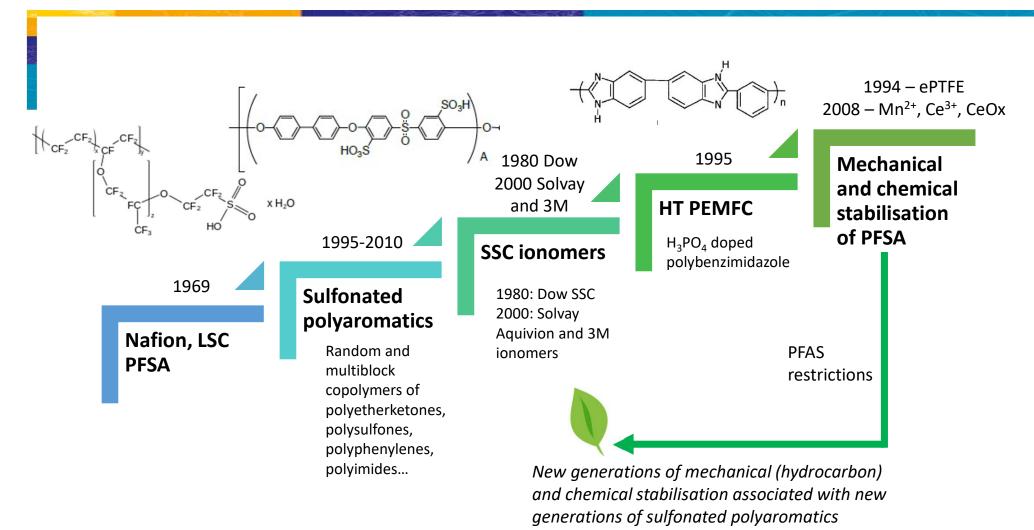
Proposal acknowledges fluoropolymer use in PEMFC, PEMEL

But only derogates on PEMFC (6.5 years period) not on PEMEL

Massive potential impact on timely implementation of PEM technologies for H_2 generation and H_2 end uses

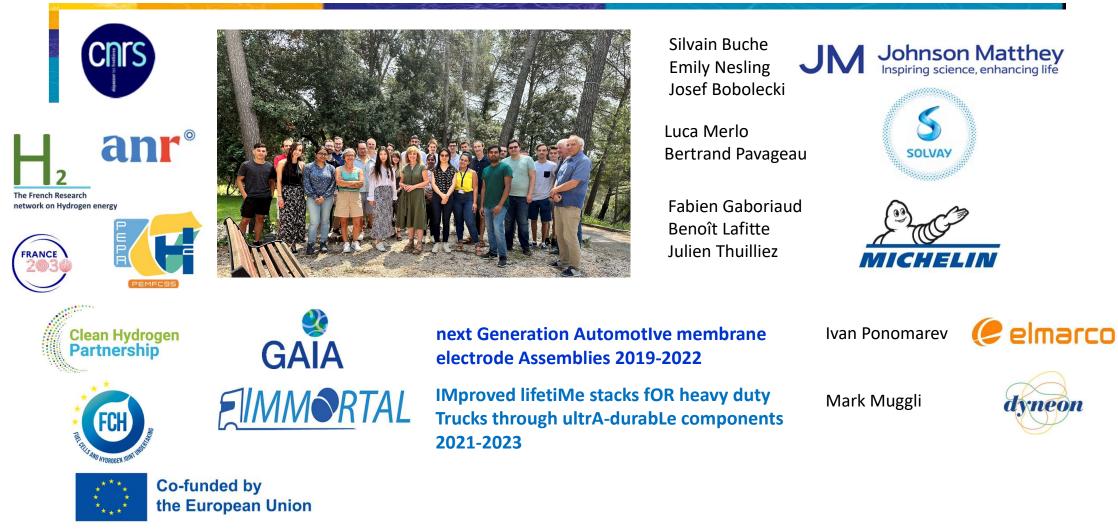
Hydrocarbon alternatives to PFSA ionomer and membrane

PFSA	Sulfonated hydrocarbon type	
Strong phase separated structure that favours	Less phase separation, strong dimensional	
proton conduction	swelling in water	
Superacidic	Not superacidic	
Exceptional chemical stability	Lower chemical stability	
High oxygen permeability	Lower oxygen permeability	
Ionomer colloids for catalyst layer processing	lonomer solutions	


2000- Direct sulfonation of high performance polymers (Jones, Rozière).

- 2010- Block copolymers (Mercier, McGrath, Jannasch).
- 2015- No weak links polyphenylenes (Holdcroft, Miyatake).

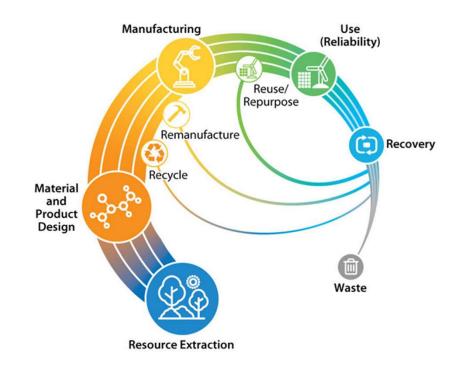
Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications, Jones, Rozière, J. Membr. Sci. 2001, **185** 41 – 58. Non-fluorinated polymer materials for proton exchange membrane fuel cells Rozière, Jones, Annu. Rev. Mater. Res., 2003, **33**, 503 – 555.


Brittle in dry state, high degree of sulfonation \rightarrow high swelling with water, low phase separation.

 Regain of research on sulfonated hydrocarbon polymers and membranes is essential, that integrates the experience in mechanical and chemical reinforcement gained with PFSA membranes

Fuel cell and electrolysis membrane development - summary

Acknowledgements


Outlook

The past

- Main driver: highly performing and robust materials to satisfy end-user requirements to enable (PEM) fuel cell and electrolyser deployment
- Less attention to sustainability in the use of critical raw materials or the environmental impact of the chemistries

The future

- Thrifting doing more with less ; Circularity by design ; Environmentally benign chemistries
- Research is essential to underpin the fuel cells and hydrogen industry and safeguard against future supply or legislative constraints

Figure from: https://www.nrel.gov/research/circular-economy.html